

Logic

Logical operators: - (not or negations), 1 (and), V (or), => (inplication)

Le> (equivalence), | (shefter stroke), & Pierce Amow

Tautology: Always true (compound proposition)

Controdiction; Always false (compound proposition)

Contingency: neither toutelogy/ Contradicting

1: 7(AAB)

Logically equivalent?

Compound state A and P are logically equivalent if A <> 8 is a tartology

× Notation A = B denotes A and B are logically equivalent.

Exercise 1.2

Let A and B be statements. Use a truth table to show that

$$\neg (A \Rightarrow B) \equiv A \land \neg B.$$

 $(2\,\mathrm{Marks})$

A	[8	[¬ A]	78	A => B	17(A=>B)	AVJB	7 (A=>B) (=> A N 7 P
T	1 +		=	+	1 6 1	F	Т
F	T	τ	F	Ť	C	F	T
τ	F	F	T	۴	7	\ T	T (
F,	F	1	T	† ; †	F	1 = 1	7

From the table column, we can see that 7(A=>8) is equal to A178 that all values is true, in other words they are a twology.

Exercise 1.3

Explain in your own words the difference between the statements

$$\exists_{0\in\mathbb{Q}} \ a\in\mathbb{Q} \ a+0=0+a=a \qquad \text{and} \qquad \forall_{a\in\mathbb{Q}} \ a\in\mathbb{Q} \ a=0$$

 $(4\,\mathrm{Marks})$

There is an exist O in elements of rationals number that too all any element "a" in the set of rational numbers will lead to at 0 = 0 + a = a

For all a in vational number there will exist a o in in Q such that ut o = 0 + 0 = n

Both of this is true, but by having universal quantities in front of exiscusial quantities and vice versa, will lead to different ways of thinking (logic, Ex; pcx,y)

let take X: football team Y: Players wonoplay football

3 y -> There is Evolution that have players who play football

Y 3 - for all football players there mill be some players who in the football from.

$$\frac{a}{b} < \frac{a+}{1}$$

$$\frac{\lambda}{b} < \frac{\alpha^{2}}{b}$$

$$\frac{d}{d} \frac{1}{d} < \frac{a+c}{d+d} < \frac{c}{c}$$

$$\frac{c}{d} = \frac{c}{d} + \frac{c}{d} < \frac{c}{d}$$

$$\frac{\chi_1 + \chi_2 + \dots + \chi_N}{N} \geq \sqrt{\chi_1 \cdot \chi_2 \cdot \chi_3 \cdot \dots \cdot \chi_N}$$

$$\frac{q_1 + q_2 + \dots + q_N}{N} \geq \sqrt{q_1 \cdot q_2 \cdot \chi_3 \cdot \dots \cdot \chi_N}$$

Sets

Set: An unordered collection of object

operations: V (union), A lintersect), \ (difference), A (complement of set 1)

Natural number properties (1,2,3,2----)

Addition Multiplication

Associativity 9+ [6+()=(a+6)+ (a. (6. ()= (a-6). (

Existence, a+0 = 0+a = a = 1=1. a = 4

Commutativity at 6 = b+u a.b = b. or

Pistributivity a. (1+C) = a.b+q.C

Rational number - The rutio of two integers, a and 6, Where bis not equal to zero,

same as Natoral number

Add Inverse elemen f

(-a)+a=a+(-a)=0

a and 6 are integers and $6 \, \sharp$

$$R_{e_{z_{1}}} = \frac{z_{1} + \overline{z_{1}}}{z}$$

$$(|M z_{1}|) = \frac{z_{1} - \overline{z}_{1}}{z}$$

$$\frac{1}{2_1 + 2_2} = \frac{1}{2_1 + 2_2}$$

$$\frac{1}{2}$$
 $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$

$$\frac{\overline{z_1 - z_2}}{\overline{z_1 z_2}} = \overline{z_1} - \overline{z_2}$$

$$\left(\frac{\overline{z_1}}{\overline{z_2}}\right) = \frac{\overline{z_1}}{\overline{z_2}} | z_2 \neq 0$$

Polar form: (121, arg 2) or
$$(r, \theta)$$

1. $r = \sqrt{a^2 + b^2}$

Euler's Formoln: eio = coso + i sin O

De morvre's Theorem

 $Z^{n} = r^{n} (los(n\phi) + lsin(n\phi))$

complex number in exponential form: Z = h. eio

Sequence and Subsequence

$$\left\{ \begin{array}{l} a_{n} \right\} \leq \left\{ \begin{array}{l} a_{n+1} \right\} : \text{Monotonically increasing} \\ \\ \left\{ \begin{array}{l} a_{n} \right\} \geq \left\{ \begin{array}{l} a_{n+1} \right\} : \text{nonotonically decreasing} \\ \\ \left\{ \begin{array}{l} a_{n} \right\} \leq \left\{ \begin{array}{l} a_{n+1} \right\} : \text{strictly linevease} \end{array} \right\}, \text{ monotonically decreasing} \\ \\ \left\{ \begin{array}{l} a_{n} \right\} \geq \left\{ \begin{array}{l} a_{n+1} \right\} : \text{ monotonic}_{0} \end{array} \right\}, \text{ trictly decreasing}$$

Subsequence: Let $\{a_n\}$ be a sequence. If n_1, h_2 , are positive integers such that $n_K < n_{K+1}$ for each $K \in N_1$ then $\{a_{n_K}\}$ whose terms are a_{n_1}, a_{n_2}, \ldots is called a subsequence of $\{a_n\}$

Convergence and Divergence of Sequen	(C
7. im a _n = [n → ∞	
\forall \exists \forall then $ a_n-L < \epsilon$ $\epsilon > 0$ $N \in \mathbb{N}$ $N > N$	
I, $M > 0$ $N \in N$ $M > 0$ $M = \infty$ Then $ a^{M} > M$ Then $ a^{M} > M$	COMU EU DIM T-
Important Results / Theorem but Lound	led convence not always conversint
convergent sequence i's bounded, A conver	igant sequence has precisely a unique limit
let $\{q_n\}$ be a sequence. $\lim_{n\to\infty}q_{2n}=\infty$ and	and $\lim_{n\to\infty} a_{2n+1} = 0$ then $\lim_{n\to\infty} a_n = 0$
Isnit lav	
sum / difference law	gov timt law
M (4th) = /lin q t lin b	him of = lin of it lin on #0
Constant moltiple law	N→W
11'm (. 9 z (. 1im 9	Powerlaw
Product law	lim an = (lim an) if p>0, an=0
11'm (u·b) = 1im u·lim b n→n n→n n→n	lim NJa
	Я-> Л = lin q Я n-> Д

A

$$q_n \leq b_n \leq c_n$$

that
$$\lim_{n\to\infty} a_n = \lim_{n\to\infty} C_n = a$$
 Then $\lim_{n\to\infty} b_n = a$

$$\underbrace{\text{EX.}}_{\substack{h \to \infty}} \left(\frac{1}{4n^2+1} + \frac{2}{4n^2+2} + \dots + \frac{n}{4n^2+n} \right)$$

$$\frac{1+2+\cdots+n}{4n^2+n} < 6n < \frac{1+2+\cdots+n}{4n^2+1}$$

$$\int \frac{n \cdot (n+1)}{4} \frac{1}{8}$$

$$\frac{1}{6} \frac{1}{8} = \frac{1}{8}$$

accumulation point

A point which value of the set come artitudily close.

limit: number for any given distance, all terms of the sequence eventually

are within that distance of limit.

Accumulation point: for any aistance, there will be other succeeding seguence term within that distance of the accumulation point.

- · Any limit is also an accumulation point
- · A sequence can have at most a single limit, but can have zero or more accumulation points,

) ubsequence

if converge, each subsequence limit must be the same else: if diverge.

× 9 = { 1, 2, 3, 4...}

9, = { 2, 1, 6, }

Show = (-1)n. nel is divergent, (Hint: Check whether its subsequence Converges to same limit)

$$\alpha_{2N} = (-1)^{2h}, \frac{2n+1}{2N} = \frac{2n+1}{2n} = 1 + \frac{1}{2n}$$

$$\begin{vmatrix} 1 & \frac{1}{2} & \frac{1}{2}$$

Since the subsequences do not converge to some limit, then In is diseasent.

Prove
$$\lim_{h\to\infty} \frac{3n+1}{2n+1} = \frac{3}{2}$$
 $\lim_{h\to\infty} 4n = L$

ILF
$$\epsilon > 0$$
 \forall \exists \forall $|q_n - L| < \leq$ $\epsilon > 0$ NGN $n > N$

$$|q_n-L|<\xi = |\frac{3n+1}{2n+1}-\frac{3}{2}|<\xi$$

$$\left| \frac{6n+2-(6n+3)}{(2n+1)(2)} \right| = \frac{1}{4n+2} < \frac{1}{4n}$$

since we want to prove | 3h+7 - 3) < E, we only now.

$$\frac{1}{t_N} < \mathcal{E} => N > \frac{1}{t_R}$$
, $\forall \mathcal{E} > 0$, choose $N = \left(\frac{1}{t_R}\right)$: when $N > N$

We get
$$\left|\frac{3n+1}{2n+1} - \frac{3}{2}\right| < \frac{1}{4n} < \frac{1}{4n} = \frac{1}{4(\frac{1}{46})} = \frac{1}{\frac{7}{6}} = \frac{1}{2n+1}$$
 Proved

Consider
$$q_n = 1 + \frac{1}{z^2} + \frac{1}{3^2} + \cdots + \frac{1}{n^2}$$
, $\forall_n \in \mathbb{N}$, show q_n is bounded

and monotone, then deduce an is conveye

Prove monotonic
$$q_{n+1} - q_n = \left\{ \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2} + \frac{1}{(n+1)^2} \right\} - \left\{ \frac{1}{2^2} + \dots + \frac{1}{n^2} + \frac{1}{n^2} \right\}$$

$$\frac{1}{qs} = \frac{1}{n^2 - n} = \frac{1}{n(n-1)} \cdot \frac{1}{n} = \frac{1}{(n-1)}$$
 show it is acomposition in the normal shows that the state of the s

Bownded
$$\eta_{N} = (1 + \frac{1}{2} + \frac{1}{3} + \frac{1$$

SERIES

$$9_1 + 9_2 + 9_3 - - i$$
 a series

Written:

 $\sum_{h=1}^{N} a_h$

or

 $k=1$
 $k=$

This creates A seg.

$$K = 1$$

$$N = N$$

$$\sum_{k=1}^{N} u_k = S_{ij}$$

$$\sum_{k=1}^{K} v_k = S_{ij}$$

$$\sum_{k=1}^{N} u_k = S_{ij}$$

$$\sum_{k=1}^{N} v_k = S_{ij}$$
There is a new S_i

$$\frac{2}{(2n-1)} \frac{2}{(2n+1)}$$

$$\int_{-\infty}^{\infty} \frac{A}{(2n-1)} + \frac{R}{(2n+1)} (2n-1) \frac{(2n-1)}{(2n+1)}$$

$$\frac{1}{\sum_{h=1}^{\infty} \frac{1}{4^{h^{2}-1}}} = \frac{1}{(2n-1)(2n+1)} = \frac{1}{(2n-1)$$

$$\sum_{N=1}^{\infty} \frac{4}{4n^2 - 1} = \sum_{N=1}^{\infty} \left(\frac{2}{2n - 1} - \frac{2}{2n + 1}\right)$$

$$S_{N} = \left(\frac{2}{1} - \frac{2}{3}\right) + \left(\frac{2}{3} - \frac{2}{5}\right) + \left(\frac{2}{5} - \frac{2}{7}\right)$$

$$\left(\frac{2}{2n - 1} - \frac{2}{2n + 1}\right)$$

$$S_{N} = 2 - \frac{2}{2n - 1}$$

$$\lim_{N \to \infty} 2 - \frac{2}{2n - 2}$$

$$\lim_{N \to \infty} 2 - \frac{2}{2n - 2}$$

$$\lim_{N \to \infty} 2 - \frac{2}{2n - 2}$$

Diverge IrlZ1

$$\sum_{n=1}^{\infty} a r^{n-1} = a + av + qr^2 + uv^3 + ...$$

$$\sum_{n=1}^{\infty} av^n$$

$$\sum_{n=0}^{\infty} av^n$$

$$\frac{(2)(2)_{M}}{\sum_{\mu=1}^{n-1}}$$

 $\sum_{h=0}^{\infty} \frac{L^{h-1}}{r^{h+1}} \geq \sum_{h=0}^{\infty} \frac{1}{L^{\frac{1}{5}}} \cdot \left(\frac{2}{5}\right)^{h-1}$ $\frac{z}{(5)(5)^{\eta}} \qquad \frac{1}{5^{\eta}} \cdot \left(\frac{z}{5}\right)^{\eta-1}$

 $\sum_{\infty} \alpha \lambda_{N-1} = \frac{\alpha}{1-\lambda}$

$$\frac{E\chi}{h=1} \sum_{n=1}^{\infty} 3\left(-\frac{1}{2}\right)^{n-1} \Rightarrow \alpha = 3, \quad r_2 - \frac{1}{2}$$

$$|\gamma| < 1 \Rightarrow \text{ scries } \text{ Converges } \text{ and }$$

- \frac{5}{2}\left(-\frac{1}{2}\right)^{N-1}

 $\sum_{n=1}^{\infty} q_n = \sum_{n=1}^{\infty} \frac{\tau}{3} \left(-\frac{1}{5} \right)^{\eta - 1}$

$$|\gamma| \le 1$$
 -> scries converges and sum is = $\frac{3}{1+\frac{7}{2}} = 2$

$$[Y] C 1 \implies ScrieS \quad converges \quad and \quad Svm is = \frac{3}{1+\frac{7}{2}} = 2$$

$$\frac{EY}{\sum_{h=1}^{N}} a_{h} = \left(\frac{3}{3} - \frac{3}{9} + \frac{5}{27} - \frac{5}{81} + \dots\right)$$

$$= \sum_{h=1}^{N} (1 - 1) \cdot (1 - 1)$$

$$\frac{S}{\sum_{n=1}^{\infty}} a_n = \left(\frac{5}{3} - \frac{5}{9} + \frac{5}{27} - \frac{5}{81} + \dots \right)$$

$$= \frac{5}{3} \left(\frac{1}{1} - \frac{1}{3} + \frac{1}{9} - \frac{1}{27} + \dots \right)$$

 $=\frac{5}{3}\left(\frac{1}{30}-\frac{1}{31}+\frac{4}{31}-\frac{1}{33}...\right)$

 $\alpha = \frac{5}{3}$, $r = -\frac{1}{3}$ so converges

 $\int V M = \frac{\sqrt{3}}{3} = \frac{1}{3}$

~ \ \ \ \ -]

Harmonic Seveis

It a series
$$\sum_{h=1}^{\infty}$$
 an converges, $\lim_{h\to\infty} a_n = 0$

If $\lim_{h\to\infty} a_n \neq 0$ or $0.00.00$

If
$$\lim_{n\to\infty} 9_n \neq 0$$
 or $0.N.E$

The series $\sum_{n=1}^{\infty} 9_n Diverge$.

$$\left|\frac{\eta+\eta}{\alpha_n}\right| = \left|\frac{\zeta}{\zeta}\right|^2 > \sum_{n=1}^{\infty} \eta_n \text{ is absolutely}$$

3)
$$\lim_{n\to\infty} \left| \frac{q_{n+1}}{\alpha_n} \right| = L > 1$$
 or diverges => $\sum_{n=1}^{\infty} \alpha_n$ is divergent

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \end{array}$$

 $\lim_{n\to\infty} \left| \frac{\alpha_{n+1}}{\alpha_{M}} \right| = \lim_{n\to\infty} \left| \frac{\frac{2^{n+1}}{2^{m}}}{\frac{2^{m}}{2^{m}}} \right| \qquad \qquad = \lim_{n\to\infty} \left| \frac{2 \cdot \frac{1}{(n+1)}}{(n+1)} \right|$

$$M \left| \frac{q_{N+1}}{\alpha_N} \right| = L > 1 \text{ or diverges} = \sum_{h=1}^{\infty} \alpha_h$$

1) $\left| \frac{q_{n+1}}{q_n} \right| = \left| \frac{q_n}{q_n} \right|$

 $= \lim_{N \to \infty} \left| \frac{2^{N+1}}{(n+1)!}, \frac{N!}{2^{n}} \right| = \lim_{N \to \infty} \left| \frac{2^{N+1}}{2^{n}}, \frac{N!}{(n+1)!} \right| = \lim_{N \to \infty} \left| \frac{2}{n+1} \right|$ $\lim_{N \to \infty} \left| \frac{2^{N+1}}{(n+1)!}, \frac{2^{N+1}}{(n+1)!} \right| = 0 < 1$ (onverge

$$\begin{vmatrix} iM \\ h \rightarrow 50 \end{vmatrix} = 2 \cdot \frac{h \cdot (h-1) \cdot (h-2) - \dots \cdot 2 \cdot 1}{(h+1) \cdot h \cdot (h-1) \cdot (h-2) \cdot \dots \cdot 2 \cdot 1}$$

3.)
$$\begin{bmatrix} 1 \\ M \end{bmatrix} = \begin{bmatrix} 1 \\ M \end{bmatrix} = 1 =$$
 In conclusive

EX 1 × wi

$$\left| \begin{array}{c} \alpha_n \\ \end{array} \right| = 1$$

$$\left| \begin{array}{c} \alpha_{n+1} \\ \end{array} \right| = 1$$
or diverges => $\frac{\infty}{2}$

1)
$$\lim_{n\to\infty} \int_{\alpha_n} = L < 1 \rightarrow converges$$

$$\lim_{N\to\infty} \int_{0}^{\infty} d_{N} = \sum_{n=1}^{\infty} a_{n} \text{ is diverge}$$

3)
$$\lim_{n\to\infty} \int_{0}^{\infty} \int_{$$

$$\sum_{h=1}^{\infty} \left(\frac{h+1}{2n-1} \right)^{\eta}$$

$$\lim_{h \to 1} \left(\frac{h+1}{2n-1} \right)^{h} = \lim_{h \to 1} \frac{1}{n+1} = \frac{1}{n+1} \leq \frac{1}{n$$

$$\lim_{n \to \infty} \int \left(\frac{h+1}{2n-1} \right)^{h} = \lim_{n \to \infty} \frac{n+1}{2n-1} = \frac{1}{2} < h$$

Excercise 1

Trutology so it is logically equivalent

$$\underbrace{E_{\text{XLVCire}}}_{\text{Show}} \{1+x_1\}\{1+x_2\}...\{1+x_n\} \ge 1+x_1+x_2$$

1+ x1 = 1+ x1 A(1) is true Check at N=9

Assume nistrue such that n+1 is hold true

 $f_{1}^{\prime} \text{ind} \quad \text{lim} \quad \left(\frac{1^{2}}{N^{3}+2} + \frac{2^{2}}{N^{3}+2} + \frac{3^{2}}{N^{3}+2} + \dots + \frac{N^{2}}{N^{3}+3} + \frac{N^{2}}{N^{3}+3} + \dots + \frac{N^{2}}{N$

$$\begin{cases}
\frac{1^{2}}{1} + \frac{2^{2}}{1} + \frac{2^{2}}{1} + \frac{3^{2}}{1} + \frac{3^{2}}{1} + \dots + \frac{n^{2}}{n^{3} + 2} \\
h \to \infty \\
1^{1} + 2^{2} + 3^{2} + \dots + n^{2} = \frac{n (n+1)(2n+1)}{1} + \frac{1}{n^{3} + 2} = \frac{2n^{3} + 3n^{2} + n}{6n^{3} + 12} = \frac{1}{n^{3} + 1} \\
\frac{1}{1} + \frac{1}{n^{3} + 2} = \frac{1}{n^{3} + 2} + \frac{1}{n^{3} + 2} = \frac{1}{n^{3} + 2} = \frac{2n^{3} + 3n^{2} + n}{6n^{3} + 12} = \frac{1}{n^{3} + 2} = \frac{1}{n^{3}$$

Exercise 5

Consider
$$q_n = \frac{2n-3}{3n+4}$$
,

Yn EN Show an is bounded

arm monotone, then deduce an is convergent

$$\frac{q_{n+1} - q_n}{3(n+1) + 2} = \frac{2(n+2) - 3}{3(n+1) + 2} - \frac{2N - 3}{3n + 2}$$

$$= \frac{2n+2-3}{3n+2} - \frac{2N-3}{3n+2}$$

$$= \frac{2h-1}{3n+2} - \frac{2n-3}{\frac{3}{3}+2} = \frac{16n+2}{(2n+2)(3n+2)} > 0 \quad \text{Mono fonically likewases}$$

$$q_n < \frac{2h-1}{3n} < \frac{2n-3}{3n} < \frac{2}{3}$$
 and $q_1 = -\frac{7}{7}$

$$-\frac{1}{7} \leq q_n \leq \frac{2}{3}$$
 Annotone and Canain so it's converted.

Monotonic sequence theorem

$$a_{n} \subseteq q_{n+1}$$
 for all n and $acn \ge q_{n+1}$ for all n

$$\frac{\alpha_{n+1}}{\gamma_n} \ge 1 \quad \text{for all } n, \alpha_n > 0 \qquad \frac{\gamma_{n+1}}{\gamma_n} \le 1 \quad \text{for all } n > 0$$

$$a - a_n \ge 0$$
 for all n $a_{n+1} - a_n \le 0$ for all N

Proove lim
$$\sqrt{\frac{n^2+\sigma^2}{N}}=1$$
 $h\to\infty$

let $E>0$ such that $E>0$ neN $N>N$

$$\sqrt{\frac{1}{1}}\sqrt{\frac{1}{2}}\sqrt{\frac{1}{2}}-1$$

$$\sqrt{\frac{1}{1}}\sqrt{\frac{1}}\sqrt{\frac{1}{1}}\sqrt{\frac{1}}\sqrt{\frac{1}}}\sqrt{\frac{1}}\sqrt{\frac{1}}}\sqrt{\frac{1}}\sqrt{\frac{1}}\sqrt{\frac{1}}\sqrt{\frac{1}}}\sqrt{\frac{1}}\sqrt{\frac{1}}\sqrt{\frac{1}}}\sqrt{\frac{1}}\sqrt{\frac{1}}\sqrt{\frac{1}}\sqrt{\frac{1}}}\sqrt{\frac{1}}\sqrt{\frac{1}}\sqrt{\frac{1}}\sqrt{\frac{1}}}\sqrt{\frac{1}}\sqrt{\frac{1}}\sqrt{\frac{1}}}\sqrt{\frac{1}}\sqrt{\frac{1}}\sqrt{\frac{1}}\sqrt{\frac{1}}}\sqrt{\frac{1}}\sqrt{\frac{1}}\sqrt{\frac{1}}\sqrt{\frac{1}}}\sqrt{\frac{1}}\sqrt{\frac{1}}\sqrt{\frac{1}}\sqrt{\frac{1}}}\sqrt{\frac{1}}\sqrt{\frac{1}}\sqrt{\frac{1}}\sqrt{\frac{1}}\sqrt{\frac{1}}\sqrt{\frac{1}}\sqrt{\frac{1}}\sqrt{\frac{1}}\sqrt{\frac{1}}\sqrt{\frac{1}}\sqrt{\frac{1}}\sqrt{\frac{1}}\sqrt{\frac{1}}\sqrt{\frac{1}}\sqrt{\frac{1}}\sqrt$$

Then, | xnyn - 0 | = |xn | | yn | < M. & = E.

Since
$$x_h$$
 is bounded $\exists \ \forall \ |x_h| \leq M$
 $M > 0$
 M

$$M > 0$$
 " $\in \mathbb{N}$
 \forall , since $\lim_{N \to \infty} Y_{n=0}$, so for $G_1 = \frac{E}{M} > 0$, $\exists N \in \mathbb{N}$ such that

when
$$N > N$$
, we have $|\gamma_n - 0| = |\gamma_n| < \varepsilon_1 = \frac{\varepsilon}{M} > 0$, $\exists N \in \mathbb{N}$ such that